General Description

The DB-I2C-S-APB-BRIDGE is an I2C Slave Controller IP Core focused on low VLSI footprint ASIC / ASSP designs not requiring internal configuration & control registers (and thus no local host CPU required). The DB-I2C-S-APB-BRIDGE processes the I2C protocol & physical layers, and receives & transmits bytes with respect to the I2C payload via a bridge APB Master Interface to user registers or memory.

The DB-I2C-S-APB-BRIDGE runs off the APB Master external clock input within the ASIC / ASSP, providing a synchronous design while offering I2C spike filtering of SDA and SCL.

The DB-I2C-S-APB-BRIDGE is a member of Digital Blocks DB-I2C Controller IP Core family, which includes I2C Master/Slave, I2C Master-only, and I2C Slave-only configurations.

Figure 1 depicts the DB-I2C-S-APB-BRIDGE Core system view. The IP is configured by internal pre-synthesis parameters and post-synthesis top-level input signals, receives input clock and reset, and performs I2C Slave-Receiver transfers (for writing data to the APB via its APB Master Interface) and Slave-Transmitter transfers (for reading data from the APB via the APB Master Interface).

**Digital Blocks offers an I2C Master and Master/Slave IP

Figure 1: DB-I2C-S-APB-BRIDGE Controller - System View
Features

- I2C Slave Controller - Implements Slave-only protocol for smaller VLSI footprint, for applications requiring Slave–Receiver and Slave–Transmitter capability
- APB Master Interface – bridging the I²C Bus to the APB Bus
- Autonomous I2C Slave Controller:
 - No local CPU host required
 - No configuring of control/status registers
- Slave I²C Controller Modes:
 - Slave – Transmitter
 - Slave – Receiver
- Supports five I2C bus speeds:
 - Standard Mode (100 Kb/s)
 - Fast Mode (400 Kb/s)
 - Fast Mode plus (1 Mbit/s)
 - Ultra fast mode (5 Mbit/s)
 - Hs-mode (3.4 Mbit/s)
- 7- or 10-bit I2C Slave ID addressing, SCL Low Wait States
- Digital filter for the received SDA and SCL lines
- Compliance with I2C specifications:
 - NXP Rev 7.0 October 1, 2021
- Fully-synchronous, synthesizable Verilog RTL core, with rising-edge clocking, no gated clocks, and no internal tri-states, for easy integration into FPGA or ASIC design flows.

Pin Description

The DB-I2C-S-APB-BRIDGE I2C Slave Controller interface signals are listed in Table 1.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2C Bus Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDAI</td>
<td>Input</td>
<td>Serial Data</td>
</tr>
<tr>
<td>SDAO</td>
<td>Output</td>
<td>Serial Data</td>
</tr>
<tr>
<td>SCLI</td>
<td>Input</td>
<td>Serial Clock Line</td>
</tr>
<tr>
<td>APB Master Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See AMBA 3 APB Protocol v2.0 Specification

Table 1: DB-I2C-S-APB-BRIDGE – I/O Pin Description
Verification Method

The DB-I2C-S-APB-BRIDGE Controller IP Core contains a test suite that generates & sends I2C transactions, monitors the I2C bus protocol, and checks expected results.

Customer Evaluation

Digital Blocks offers a variety of methods for prospective customers to evaluate the DB-I2C-S-APB-BRIDGE. Please contact Digital Blocks for additional information.

Deliverables

The DB-I2C-S-APB-BRIDGE is available in synthesizable RTL Verilog or a technology-specific netlist for FPGAs, along with Synopsys Design Constraints, a simulation test bench with expected results, datasheet, and user manual.

Ordering Information

Please contact Digital Blocks for additional technical, pricing, evaluation, and support information.

Digital Blocks, Inc.
PO Box 192
587 Rock Rd
Glen Rock, NJ 07452 USA
Phone: +1-201-251-1281
eFax: +1-702-552-1905
info@digitalblocks.com