Digital Blocks

DB-I2C-S-AXI-BRIDGE I2C Slave Controller to AXI Bridge

Semiconductor IP

General Description

The DB-I2C-S-AXI-BRIDGE is an I²C Slave Controller IP Core focused on low VLSI footprint ASIC / ASSP designs not requiring internal configuration & control registers (and thus no local host CPU required), and an AXI Master interface for read/write to user system. The DB-I2C-S-AXI-BRIDGE processes the I²C protocol & physical layers, and receives & transmits bytes with respect to the I²C payload via the bridge AXI Master Interface to user registers or memory.

The DB-I2C-S-AXI-BRIDGE runs off the AXI Master external clock input within the ASIC / ASSP, providing a synchronous design while offering I^2C spike filtering of SDA and SCL.

The DB-I2C-S-AXI-BRIDGE is a member of Digital Blocks DB-I2C Controller IP Core family, which includes I^2C Master/Slave, I^2C Master-only, and I^2C Slave-only configurations.

Figure 1 depicts the DB-I2C-S-AXI-BRIDGE Core system view. The IP is configured by internal pre-synthesis parameters and post-synthesis top-level input signals, receives input clock and reset, and performs I²C Slave-Receiver transfers (for writing data to the AXI via its AXI Master Interface) and Slave-Transmitter transfers (for reading data from the AXI via the AXI Master Interface).

Figure 1: DB-I2C-S-AXI-BRIDGE Controller - System View

1

Features

- I2C Slave Controller Implements Slave-only protocol for smaller VLSI footprint, for applications requiring Slave–Receiver and Slave–Transmitter capability
- AXI Master Interface bridging the I²C Bus to the AXI Bus
 - o AXI4, AXI4-Lite, and AXI3 releases
 - o AXI Master Read and write Channels
- Autonomous I2C Slave Controller:
 - No local CPU host required
 - No configuring of control/status registers
- Slave I²C Controller Modes:
 - Slave Transmitter
 - Slave Receiver
- Supports five I2C bus speeds:
 - Standard Mode (100 Kb/s)
 - Fast Mode (400 Kb/s)
 - Fast Mode plus (1 Mbit/s)
 - Ultra fast mode (5 Mbit/s)
 - Hs-mode (3.4 Mbit/s)
- 7- or 10-bit I2C Slave ID addressing, SCL Low Wait States
- Digital filter for the received SDA and SCL lines
- Compliance with I2C specifications:
 - Philips The I2C-Bus Specification, Version 2.1, January 2000
 - o NXP Rev 7.0 October 1, 2021
- Fully-synchronous, synthesizable Verilog RTL core, with rising-edge clocking, no gated clocks, and no internal tri-states, for easy integration into FPGA or ASIC design flows.

Pin Description

The DB-I2C-S-AXI-BRIDGE I2C Slave Controller interface signals are listed in Table 1.

Name	Туре	Description
I2C Bus Interface		
SDAI	Input	Serial Data
SDAO	Output	Serial Data
SCLI	Input	Serial Clock Line
AXI Master Interface		
See AMBA AXI and ACE Specification, 2021		

Table 1: DB-I2C-S-AXI-BRIDGE – I/O Pin Description

Verification Method

The DB-I2C-S-AXI-BRIDGE Controller IP Core contains a test suite that generates & sends I2C transactions, monitors the I2C bus protocol, and checks expected results.

Customer Evaluation

Digital Blocks offers a variety of methods for prospective customers to evaluate the DB-I2C-S-AXI-BRIDGE. Please contact Digital Blocks for additional information.

Deliverables

The DB-I2C-S-AXI-BRIDGE is available in synthesizable RTL Verilog or a technologyspecific netlist for FPGAs, along with Synopsys Design Constraints, a simulation test bench with expected results, datasheet, and user manual.

Ordering Information

Please contact Digital Blocks for additional technical, pricing, evaluation, and support information.

Digital Blocks, Inc. PO Box 192 587 Rock Rd Glen Rock, NJ 07452 USA Phone: +1-201-251-1281 eFax: +1-702-552-1905 info@digitalblocks.com

Copyright © Digital Blocks, Inc. 2007 - 2022, ALL RIGHTS RESERVED

###

Digital Blocks is a registered trademark of Digital Blocks, Inc. All other trademarks are the property of their respective owners