

General Description

The DB-I3C-S-REG is an I3C Slave Controller IP Core focused on low VLSI footprint ASIC / ASSP designs requiring the configuration & control of registers with no local host processor. The DB-I3C-S-REG processes the I3C protocol & physical layers, and receives & transmits bytes with respect to the I3C payload to / from User Registers within an ASIC / ASSP / FPGA device. The DB-I3C-S-REG Controller implements the Slave-Transmit and Slave-Receive protocol according to the MIPI I3C-Basic-Spec-ver1_0 specification.

The DB-I3C-S-REG builds on Digital Blocks DB-I2C-S-REG Controller and supports I2C Master Slave-Transmit and Slave-Receive protocol according to the Philips I2C-Bus Specification, Version 2.1 as well as the updated NXP Rev .5 October 9, 2012 Specification.

Figure 1 depicts the system view of the DB-I3C-S-REG Controller IP Core embedded within an ASIC, ASSP or FPGA device. The DB-I3C-S-REG Controller receives and transmits data with respect to an external I3C or I2C Master Controller. The DB-I3C-S-REG internally interfaces to User Registers / Memory.

Figure 1: DB-I3C-S-REG Controller - System View

I3C Features

- I3C Slave Controller Implements Slave-only protocol for smaller VLSI footprint, for applications requiring Slave–Receiver and Slave–Transmitter capability
- Autonomous I3C Slave Controller:
 - No local CPU host required
 - No configuring of control/status registers
- Supports I3C SDR up to 12.5 MHz bus speed
- I3C 7-bit Dynamic Address Assignment
- I3C CCC Command Processor
- Compliance with I3C specification for I3C SDR Slave
 - MIPI Alliance I3C-Basic-Spec-ver1_0 specification

I2C Features

- I2C Slave Controller Implements Slave-only protocol for smaller VLSI footprint, for applications requiring Slave–Receiver and Slave–Transmitter capability
- I²C 7- or 10-bit addressing
- Supports five I²C bus speeds:
 - Standard mode (100 Kb/s)
 - Fast mode (400 Kb/s)
 - Fast mode plus (1 Mbit/s)
 - Ultra fast mode (5 Mbit/s)
 - Hs-mode (3.4 Mbit/s)
- Compliance with I2C specifications:
 - Philips The I2C-Bus Specification, Version 2.1, January 2000
 - NXP Rev .5 October 9, 2012
- Fully-synchronous, synthesizable Verilog RTL core. Easy integration into FPGA or ASIC design flows.

Pin Description

The DB-I3C-S-REG I3C Slave Controller interface signals are listed in Table 1. Note that a bi-directional driver is available for SDAI / SDAO.

Name	Туре	Description
I3C Bus Interface		
SDAI	Input	Serial Data
SDAO	Output	Serial Data
SCLI	Input	Serial Clock Line
User Register Interface		
Please contact Digital Blocks for more information		

Table 1: DB-I3C-S-REG – I/O Pin Description

Verification Method

The DB-I3C-S-REG Controller IP Core contains a test suite that generates & sends I3C transactions, monitors the I3C bus protocol, and checks expected results.

The DB-I3C-S-REG Controller IP Core has internally been verified as follows:

- Instantiated within an FPGA, and communicating with ASSP I3C Master IP Controllers.
- Instantiated within an FPGA, and communicating with Digital Blocks I3C Master IP Controller, and A NIOS II processor for expected data checking.
- Customer Implementations

Customer Evaluation

Digital Blocks offers a variety of methods for prospective customers to evaluate the DB-I3C-S-REG. Please contact Digital Blocks for additional information.

Deliverables

The DB-I3C-S-REG is available in synthesizable RTL Verilog or a technology-specific netlist for FPGAs, along with Synopsys Design Constraints, a simulation test bench with expected results, datasheet, and user manual.

Ordering Information

Please contact Digital Blocks for additional technical, pricing, evaluation, and support information.

Digital Blocks, Inc. PO Box 192 587 Rock Rd Glen Rock, NJ 07452 USA Phone: +1-201-251-1281 eFax: +1-702-552-1905 info@digitalblocks.com

Copyright © Digital Blocks, Inc. 2007 - 2019, ALL RIGHTS RESERVED

###

Digital Blocks is a registered trademark of Digital Blocks, Inc. All other trademarks are the property of their respective owners